Aufgaben Elektrisches Feld Mit Lösungen

Setze 5 in 4 ein: 6 \[ \frac{\sigma \, A}{\varepsilon_0} ~=~ \oint_{A} \boldsymbol{E} ~\cdot~ \text{d}\boldsymbol{a} \] Da die Ebene in jedem ihrer Punkte symmetrisch und homogen ist, zeigt das elektrische Feld auf beiden Seiten aus der Ebene heraus. Auf der oberen Seite der Ebene zeigt das E-Feld in kartesischen Koordinaten in z-Richtung: \( \boldsymbol{E} = E\, \boldsymbol{\hat{e}}_{\text z} \). Deshalb liefern die Seitenflächen der Gauß-Schachtel keinen Beitrag zum Flächenintegral, da elektrisches Feld und der Orthogonalenvektor dieser Seitenflächen senkrecht aufeinander stehen. Aufgaben zu den elektrischen Feldern. Betrachte beispielsweise eine Seitenfläche, deren Orthogonalenvektor in x-Richtung zeigt: 7 \[ \boldsymbol{E} ~\cdot~ \text{d} \boldsymbol{a}_{\text s} ~=~ E\, \boldsymbol{\hat{e}}_{\text z} ~\cdot~ \boldsymbol{\hat{e}}_{\text x} \, \text{d}a_{\text s} ~=~ 0 \] Die einzigen Stücke der Gaußschen Schachtel, die Beiträge zum E-Feld liefern, sind die beiden Deckelflächen, deren Orthogonalenvektoren in entgegengesetzte Richtungen zeigen.

Aufgaben Elektrisches Feld Mit Lösungen Su

Eine positiv geladene Kugel mit der Ladung $q = 10 \text{ nC}$ befindet sich in einem homogenen elektrischen Feld der Strke $E = 10 \text{ kN/C}$. a) Berechnen Sie den Betrag der auf die Kugel wirkenden Kraft. b) Bestimmen Sie die Ladung, wenn die Kugel eine Kraft von 10 N erfhrt.

Level 3 (für fortgeschrittene Schüler und Studenten) Level 3 setzt die Grundlagen der Vektorrechnung, Differential- und Integralrechnung voraus. Geeignet für Studenten und zum Teil Abiturienten. Eine unendlich ausgedehnte, unendlich dünne Ebene trägt eine homogene Flächenladungsdichte \( \sigma \). Bestimme das elektrische Feld \( \boldsymbol{E} \) an jedem Ort im Raum. Aufgaben elektrisches feld mit lösungen su. Lösungstipps Benutze die Maxwell-Gleichung für zeitunabhängiges E-Feld: \[ \nabla ~\cdot~ \boldsymbol{E} ~=~ \frac{1}{\varepsilon_0} \, \rho \] wobei \( \rho \) die (Raum)Ladungsdichte ist. Nutze außerdem den Gauß-Integraltheorem: \[ \int_{V}\left( \nabla ~\cdot~ \boldsymbol{E} \right) \, \text{d}v ~=~ \oint_{A} \boldsymbol{E} ~\cdot~ \text{d}\boldsymbol{a} \] und nutze die ebene Symmetrie aus. Lösungen Lösung Gauß-Schachtel, die einen Teil der unendlichen Ebene P einschließt. Zeichne oder stell Dir ein zur Symmetrie des Problems geeignetes Gauß-Volumen vor. Da es sich um ein Problem mit der ebenen Symmetrie handelt, eignet sich dafür eine Gaußsche Schachtel.