Cauchy Produkt Einer Reihe Mit Sich Selbst

Der einzige wichtige Satz der mir zum Cauchy-Produkt einfällt ist, dass wenn ich 2 abs. konvergente Reihen habe und diese multipliziere, dann konvergiert ihr Produkt (also das Cauchy-Produkt) ebenfalls absolut. Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich benötige bitte nur das Ergebnis und keinen längeren Lösungsweg. " Hierzu passend bei OnlineMathe: Zu diesem Thema passende Musteraufgaben einblenden Sina86 01:20 Uhr, 20. 2013 Hallo, schau noch einmal nach, eine Reihe geht immer bis unendlich. D. h. da sollte stehen ∑ n = 0 ∞ a n ⋅ ∑ n = 0 ∞ = ∑ n = 0 ∞ d n mit d n:= ∑ k = 0 n a k ⋅ b n - k Also in deinem Beispiel ∑ n = 0 ∞ 1 ( n + 1) 2 ⋅ ∑ n = 0 ∞ 1 n! = ∑ n = 0 ∞ ∑ k = 0 n 1 ( k + 1) 2 ⋅ 1 ( n - k - 1)! Und jetzt muss man hoffen, dass auf der rechten Seite etwas rauskommt, was leichter auszurechnen ist. Zu der Doppelsumme ist zu sagen, dass sie sich ganz einfach daraus ergibt, wenn man endliche Summen miteinander multipliziert. Cauchy produkt einer reihe mit sich selbst. Dann kommt man auf die Idee, dass ein solcher Zusammenhang für Reihen gelten könnte.

Cauchy-Produkt Für Reihen – Serlo „Mathe Für Nicht-Freaks“ – Wikibooks, Sammlung Freier Lehr-, Sach- Und Fachbücher

Ich habe jetzt folgendes: (Z stellt Summe Zeichen da, da ich vom Handy tippe) cn = Z (-1)^k * 1/√k * (-1)^n-k * 1/√(n-k) = (-1)^n Z 1/(√(k*(n-k))) Mit arithm. Und geom. Mittel folgt |cn | >= Z 2/n >= 1 Da cn keine Nullfolge, divergent. Kann bitte einer drüber schauen ob das so geht? Ich hoffe es ist verständlich.

\quad $$ Die Summanden des Cauchy-Produkts ergeben somit keine Nullfolge, daher kann das Cauchy-Produkt auch nicht konvergieren.